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Rapid Note

A new universality for random sequential deposition of needles
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Abstract. Percolation and jamming phenomena are investigated for random sequential deposition of rect-
angular needles on d = 2 square lattices. Associated thresholds pperc

c and pjam
c are determined for various

needle sizes. Their ratios pperc
c /pjam

c are found to be a constant 0.62±0.01 for all sizes. In addition the ratio
of jamming thresholds for respectively square blocks and needles is also found to be a constant 0.79±0.01.
These constants exhibit some universal connexion in the geometry of jamming and percolation for both
anisotropic shapes (needles versus square lattices) and isotropic shapes (square blocks on square lattices).
A universal empirical law is proposed for all three thresholds as a function of a.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 64.60.Ak
Renormalization-group, fractal, and percolation studies of phase transitions

Percolation phenomena are generic in the study of dis-
ordered media like porous materials, alloys, ecosystems,
etc. [1]. A percolation transition is based on calculating
the probability of occurrence of an infinite connectivity be-
tween elements of the random medium as a function of the
fraction p of constitutive elements. The usually concerned
object is the percolating cluster connecting distant bor-
ders of the medium. At the critical point pperc

c , this cluster
is very tortuous and is a fractal object. Even though some
advances have been made in the understanding of perco-
lation, numerous questions remains unanswered today [2].
Among others, the exact values of many thresholds are
still not known though some powerful conjectures have
been proposed for a rather large class of lattices [3].

Beside connectivity properties, another fundamental
question related to disordered structures is the construc-
tion of randomly packed structures. Among other models,
the random deposition also called Random Sequential Ad-
sorption (RSA), leads to a critical phenomenon. Above a
critical fraction pjam

c of occupied sites, the medium be-
comes fully saturated. No more object can be inserted in
it [4]. At this stage the packing density of (identical) ob-
jects filling nearly the whole medium is at maximum.

In this paper, we investigate both percolation and jam-
ming phenomena of non-overlapping anisotropic objects
(needles) on strictly d = 2 square lattices, needles hav-
ing commensurate scales with respect to the lattice spac-
ing. The study of packed anisotropic objects is relevant
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for geometrical-physical properties of granular media like
the electrical properties of metallic needles [5] or the com-
paction properties of granules [6]. We will see that both
phenomena (percolation and jamming) become highly re-
lated to each other independently of the aspect ratio a of
the needles.

Earlier studies of needles within the percolation frame-
work have been investigated in the overlapping case only
and have been introduced for e.g. mimicking the formation
of microfractures in a brittle material [7]. The percolation
of non-overlapping needles has never been studied to our
knowledge. The RSA of needles has only been considered
for specific aspect ratio values, e.g. a = 2 on d = 2 lat-
tices [8], and for off-lattice cases [9]. It seems that the RSA
of needles on discrete lattices has not been considered up
to now. The RSA of (isotropic) blocks on a square lat-
tice has been numerically investigated by Nakamura [11]
and thereafter confirmed in [12]. We will also compare our
work to Nakamura’s result in order to emphasize the effect
of anisotropy. Also, an unexpected needle-block relation-
ship will be emphasized in the following!

On the square lattice, touching needles are needles
which have at least one cell side in common. Figure 1
illustrates both percolation and jamming clusters for the
particular aspect ratio a = 4. The figure presents a 16×16
square lattice at pperc

c and pjam
c for the case of 4× 1 nee-

dles, and a jammed phase for 4× 4 blocks. In the case of
needles, one observes that both transitions take place at
quite different values of the fraction p of occupied sites.
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Fig. 1. (a) Percolation cluster of non-overlapping needles of
aspect ration a = 4. (b) The largest cluster at the jamming
transition.

As we will see below, the percolation threshold is “low”
implying that the unoccupied sites (holes) can form open
and large pores. At the percolation threshold, the needle
structure is highly heterogeneous. When the fraction of
needles increases, the large pores are filled up to the jam-
ming situation. Near the jamming transition, some short
range order appears. Indeed, a close packing of needles ori-
ented in the same direction is observed. Close (oriented)
packed needles seem to form blocks of size a × a! In or-
der to emphasize this ordering, a typical jamming phase is
presented in Figure 2 for L = 400 and for a = 20. Horizon-
tal and vertical orientations of needles are represented in
different grey levels. The different colors put into evidence
the short range ordering. More precisely, some domains of
horizontal or vertical needles are seen.

In the third case illustrated in Figure 1, 4 × 4 blocks
are seen in the jamming phase. Large spanning clusters
of connected blocks are not formed. One should note that
percolation does not occur below the jamming threshold
in the case of blocks. However, percolation always takes
place before jamming in the case of needles. This makes
a big difference between the deposition of anisotropic and
isotropic non-overlapping objects on square lattices.

In order to determine the thresholds for both phenom-
ena, numerical simulations have been performed on d = 2
square lattices containing up to 2000× 2000 sites. Start-
ing from an empty lattice, needles are added sequentially
such that p increases linearly. The percolation and jam-
ming phenomena are checked until they are found. The
first percolation threshold, i.e. when two distant borders
are connected, is considered here, in contrast to the sec-
ond percolation threshold which is obtained when the four
borders are connected [13]. The probability Pperc to find
a percolating cluster and the probability Pjam to find a
jamming phase are fitted by the error function

P =
1√

2π∆

∫ p

−∞
exp

[
−1

2

(
p′ − pc

∆

)2
]

dp′ (1)

where pc is the critical point and ∆ is the width of the
transition. Our assumption that the distribution of critical
points is a Gaussian is sufficient from a practical point of
view, though not claimed to be exact [2]. One should also
note that the jamming transition is always sharper than
the percolation transition, i.e. ∆jam < ∆perc. The length
∆ vanishes [1] as a power of the system size L. One has

∆ ∼ L−1/ν (2)

where∼means asymptotic proportionality. This allows for
the measure of the exponent ν for the correlation length
ξ which diverges at the critical point as ξ ∼ |pc − p|−ν .
The above relationship (2) means that the transition is
sharper for larger lattice sizes. As expected, the exponent
value has been found to be νperc = 1.35± 0.02 compatible
with the νperc = 4/3 value known for d = 2 percolation
with isotropic particles. Another exponent value is found
for the jamming transition: νjam = 1.0± 0.1, a value also
reported in the work of Nakamura [11] about the jamming
of blocks. Both values νperc and νjam have been found to be
independent of the aspect ratio a of the needles. It seems
at first that both critical phenomena are independent of
each other since critical exponents and thresholds are dif-
ferent. However, we will see here below that a relationship
between percolation and jamming thresholds nevertheless
exists!

The threshold values are slightly dependent on the sys-
tem size L. The following dependence

pc(∞)− pc(L) ∼ L−1/ν (3)

has been established for percolation [1]. The latter re-
lationship allows us to extrapolate the threshold for
an infinite system L → ∞. Table 1 summarizes some
of the extrapolated values of pc for both percolation and
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Fig. 2. Jamming phase for a = 20 needles. The lattice size is 500× 500. Vertical and horizontal orientations are represented by
different grey levels.

Table 1. List of some thresholds pc for both percolation and
jamming phenomena for typical values of the needle aspect
ratio a. The ratio pperc

c /pjam
c is also given in the fourth column.

The Nakamura thresholds for blocks in the jamming phase are
given in the fifth column. In that case, a represents the block
width. The last column gives the ratios for blocks and needles
thresholds pjam

c .

a needles blocks

pperc
c pjam

c
pperc
c
pjam
c

pjam
c

pjam
c (blocks)

pjam
c (needles)

2 0.562 0.906 0.621 0.749 0.827

3 0.528 0.847 0.623 0.681 0.804

4 0.504 0.811 0.622 0.646 0.797

5 0.490 0.787 0.623 0.628 0.798

6 0.479 0.770 0.622 0.620 0.805

8 0.474 0.757 0.626 0.603 0.797

10 0.467 0.741 0.630 0.593 0.800

jamming phenomena for typical values of a. When the as-
pect ratio a of the needles increases, both thresholds ex-
pectedly decrease. Figure 3 presents both pperc

c and pjam
c

as a function of a. Curves are guides for the eye.
In order to search for a possible relationship be-

tween both thresholds if any, we have calculated the
ratio pperc

c /pjam
c (see the third column of Tab. 1). Surpris-
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Fig. 3. The thresholds pperc

c and pjam
c as a function of the nee-

dle aspect ratio a. The Nakamura results are also illustrated.
The curves are only guides for the eye.

ingly, this latter ratio is found to be a constant 0.62±0.01
whatever the aspect ratio value a! Small deviations from
the 0.62 value are only observed for large a values; those
deviations are certainly due to the particle/lattice fi-
nite size. The universal ratio is unexpected and sug-
gests that both critical phenomena are intimately related,
although we have found that the critical exponent values
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are different. In fact, this result indicates that the per-
colation cluster should be a fundamental cluster (like a
skeleton) for the jamming phase!

It should be noted that the scaling properties of the
jamming phase are not similar to those of dense systems
otherwise the threshold pjam

c would be independent of a. In
the case of the jamming transition, a power law behavior

pjam
c ∼ a−δ (4)

with an exponent δ ≈ 0.20 has been proposed for off-
lattice RSA of rectangles [10]. These authors [10] have
suggested that the power law (4) indicates that the net-
work of needles is fractal with a dimension 2 − δ at pjam

c

at scales below a. Moreover, systematic deviations from
equation (4) appear for large a values. It seems that both
thresholds are decaying in a slower fashion than a power of
a (not shown in Fig. 3). An empirical law will be proposed
in the following.

Consider now the Nakamura work. The ratio between
the thresholds pjam

c for blocks and needles seems also to be
a universal constant (see the last column of Tab. 1)! This
remarkable result suggests that there is also a relationship
between needles and blocks for the jamming phase. Of
course, we have seen above that close packed needles form
clusters which can be seen as blocks of size a× a.

Let us interpret our results by considering a coarse
grained view of the disordered systems. In a coarse grained
view, i.e. at a scale larger than a, the notion of anisotropy
should disappear. Needles of size a are replaced by blocks
of size a × a. The threshold is then expected to be that
of classical square objects. Since the notion of anisotropy
disappears at larger scales, the fraction of occupied sites
p′ in a coarse grained view is larger than the true fraction
of occupied sites p. We propose the equation

p = p′

[
1− γ

(
a− 1
a

)2
]

(5)

where γ is a constant. The factor in the r.h.s. represents
the fraction of free sites remaining if two perpendicular
needles are touching in any a × a “supersite”. This term
represents the loss of information when one looks for the
connectivity of the packing in a coarse grained view. This
term represents also the jamming phase since no more nee-
dles can be added in a “supersite” which contains already
2 perpendicular touching needles. The parameter γ should
depend only on geometrical aspects and should be inde-
pendent of a. Using the relationship (5), one expects that
both thresholds scale as

pc(a) = C

[
1− γ

(
a− 1
a

)2
]

(6)

where C is a constant. The law (6) fits the data and is
illustrated in Figure 4. The agreement is quite remarkable.
The coefficient γ is found: γ = 0.31 ± 0.01 in all cases,
providing a constant ratio of thresholds. One should note
that the equation (6) is not valid for a = 1 which is a
particular (isotropic needles!) point.
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Fig. 4. The thresholds pperc
c and pjam

c as a function of (a −
1)2/a2. The Nakamura results are also illustrated. The straight
lines are fits using equation (6).

In the Nakamura case (blocks of size a), one has a
loss of information due to block edges. The empirical law
of equation (6) is found to hold also in that case! This
good agreement suggests that our physical arguments are
appropriate to the study of packed anisotropic objects.

In summary, we have investigated two phenomena, i.e.
percolation and jamming, which have been independently
studied up to now. We have found that they are closely
related in the case of anisotropic objects (needles). We
have interpreted this effect assuming a loss of information
in a coarse grained view. Fundamental laws have been
obtained theoretically. Finite size and shape effects seem
to have been captured in a scaling law of (1 − 1/a)2 for
needles.
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